String Theory, the Witten Index and the Seiberg-Lebesgue Problem

String/M-[F]-theory remains by far the most promising – only? – theoretical paradigm for both, grand unification and quantization of general relativity. With the Dp-action given by:

    \[S_p^D = - {T_p}\int\limits_{{\rm{worldvolumes}}} {{d^{p + 1}}} \xi \frac{{{D_{\mu \nu }}L}}{{{\partial _{{v_a}}}}}{e^{ - {\Phi _{bos}}}}{\rm{de}}{{\rm{t}}^{1/2}}G_{ab}^{\exp \left( {H_{p + 1}^{{\rm{array}}}} \right)}\]

for contextualization, note that a necessary condition for the world-sheet Dirac propagator {\delta ^{\left( 2 \right)}}\left( {{\sigma _i} - {\sigma _j}} \right):

    \[S = i\int {{d^2}} {\sigma _1}{d^2}{\sigma _2}\sum\limits_{i,j = + , - } {{\psi _i}\left( {{\sigma _1}} \right)} {A_{ij}}\left( {{\sigma _1},{\sigma _2}} \right)\psi \left( {{\sigma _2}} \right)\]

to be integrable, is that the Seiberg vacuum fluctuation of the string world-sheet:

    \[{S_\eta } = \frac{1}{\beta }\sum\limits_{\frac{{i2\pi }}{\beta }} {{{\left( {i\frac{{2n + 1}}{\beta }} \right)}^\pi }} W + \alpha '{R_{\left( 2 \right)}}\Phi \]


    \[W \equiv {h^{mn}}{\partial _m}{X^a}{\partial _n}{X^b}{g_{ab}}\left( X \right)\]

and \beta the bosonic frequency, be analytically summable. The string world-sheet is given by:

    \[{S_{ws}} = \frac{1}{{4\pi \alpha '}}\int\limits_{c + o} {d\tilde \sigma } d\tau '\sqrt h \left( {W + \alpha '{R_{\left( 2 \right)}}\Phi } \right)\]

A major problem is that by the Heisenberg’s uncertainty principle:

    \[\left( {\Delta A/} \right)\left( {\left| {\frac{{d\left\langle A \right\rangle }}{{dt}}} \right|} \right)\left( {\Delta H} \right) \ge \hbar /2\]

the string time-parameter on the world sheet {\sigma _t} with Feynman propagator in Euclidean signature being:

    \[\begin{array}{c}G\left( {x,y} \right) = \int_0^\infty {d{\sigma _t}} G\left( {x,y;{\sigma _t}} \right)\\ = \int {\frac{{{d^D}p}}{{{{\left( {2\pi } \right)}^D}}}} \exp \left[ {ip \cdot \left( {y - x} \right)} \right]\frac{2}{{{p^2} + {m^2}}}\end{array}\]


Space-Time Uncertainty and Non-Locality in String-Theory

Among the many truly remarkable properties of M-theory, that it is a unified theory of all interactions, including quantum gravity, and gives a completely well-defined analytic S-matrix satisfying all the axioms for a physically acceptable theory entailing Lorentz invariance, macro-causality and unitarity is perhaps the deepest, and to boot, the only quantum gravity paradigm that has that essential feature. Here, I will discuss some key aspects of nonlocality and space-time uncertainty in string theory. Let us start with an action smoothly interpolating between the area preserving Schild action and the fully reparametrization invariant Nambu–Goto action:

    \[I\left[ {\Phi ,X} \right] \equiv \frac{{{\mu _0}}}{2}\int\limits_\Sigma {{d^2}} \sigma \left[ {\frac{{\det \left( {{\gamma _{mn}}} \right)}}{{\Phi \left( \sigma \right)}} + \Phi \left( \sigma \right)} \right]\]

where \Phi \left( \sigma \right) is an auxiliary world-sheet field, {\gamma _{mn}} \equiv {\eta _{\mu \nu }}{\partial _m}{X^\mu }{\partial _n}{X^\nu } the induced metric on the string Euclidean world-sheet {x^\mu } = {X^\mu }\left( \sigma \right), and {\mu _0} \equiv 1/2\pi \alpha ' is the string tension. Combining, we get the Nambu-Goto-Schild action:

    \[{S_{ngs}} = - \int\limits_\Sigma {{d^2}} \xi \left\{ {\frac{1}{e}\left[ { - \frac{1}{{2{{\left( {4\pi \alpha '} \right)}^2}}}{{\left( {{\varepsilon ^{ab}}{\partial _a}{X^\mu }{\partial _b}{X^\nu }} \right)}^2}} \right] + e} \right\}\]

And to make the Nambu-Goto-Schild action quadratic in space-time coordinates, we use the Virasoro constraint and an auxiliary field that transforms as a world-sheet scalar and as an anti-symmetric tensor with respect to the space-time indices:

    \[\left\{ {\begin{array}{*{20}{c}}{{b_{\mu \nu }}\left( \xi \right)}\\{{P^2} + \frac{1}{{4\pi \alpha '}}{{\hat X}^2} = 0,\;P \cdot \hat X = 0}\end{array}} \right.\]

to yield:

Before proceeding, let us get some clarity.