String Theory, the Witten Index and the Seiberg-Lebesgue Problem

String/M-[F]-theory remains by far the most promising – only? – theoretical paradigm for both, grand unification and quantization of general relativity. With the Dp-action given by:

    \[S_p^D = - {T_p}\int\limits_{{\rm{worldvolumes}}} {{d^{p + 1}}} \xi \frac{{{D_{\mu \nu }}L}}{{{\partial _{{v_a}}}}}{e^{ - {\Phi _{bos}}}}{\rm{de}}{{\rm{t}}^{1/2}}G_{ab}^{\exp \left( {H_{p + 1}^{{\rm{array}}}} \right)}\]

for contextualization, note that a necessary condition for the world-sheet Dirac propagator {\delta ^{\left( 2 \right)}}\left( {{\sigma _i} - {\sigma _j}} \right):

    \[S = i\int {{d^2}} {\sigma _1}{d^2}{\sigma _2}\sum\limits_{i,j = + , - } {{\psi _i}\left( {{\sigma _1}} \right)} {A_{ij}}\left( {{\sigma _1},{\sigma _2}} \right)\psi \left( {{\sigma _2}} \right)\]

to be integrable, is that the Seiberg vacuum fluctuation of the string world-sheet:

    \[{S_\eta } = \frac{1}{\beta }\sum\limits_{\frac{{i2\pi }}{\beta }} {{{\left( {i\frac{{2n + 1}}{\beta }} \right)}^\pi }} W + \alpha '{R_{\left( 2 \right)}}\Phi \]

with

    \[W \equiv {h^{mn}}{\partial _m}{X^a}{\partial _n}{X^b}{g_{ab}}\left( X \right)\]

and \beta the bosonic frequency, be analytically summable. The string world-sheet is given by:

    \[{S_{ws}} = \frac{1}{{4\pi \alpha '}}\int\limits_{c + o} {d\tilde \sigma } d\tau '\sqrt h \left( {W + \alpha '{R_{\left( 2 \right)}}\Phi } \right)\]

A major problem is that by the Heisenberg’s uncertainty principle:

    \[\left( {\Delta A/} \right)\left( {\left| {\frac{{d\left\langle A \right\rangle }}{{dt}}} \right|} \right)\left( {\Delta H} \right) \ge \hbar /2\]

the string time-parameter on the world sheet {\sigma _t} with Feynman propagator in Euclidean signature being:

    \[\begin{array}{c}G\left( {x,y} \right) = \int_0^\infty {d{\sigma _t}} G\left( {x,y;{\sigma _t}} \right)\\ = \int {\frac{{{d^D}p}}{{{{\left( {2\pi } \right)}^D}}}} \exp \left[ {ip \cdot \left( {y - x} \right)} \right]\frac{2}{{{p^2} + {m^2}}}\end{array}\]

violates

M-Theory, Compactification, and Calabi–Yau FourFolds

Mathematics is less related to science than it is to philosophy ~ George Shiber

The philosophically essential point when it comes to M-theory is that it is uniquely constrained in its unifying description of all the forces of nature